Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sumaira Umbreen, Sabine Foro* and Boris Schmidt

Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstraße 22, D-64287 Darmstadt, Germany

Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study T = 299 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.038 wR factor = 0.079 Data-to-parameter ratio = 8.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(S)-4-[2-(3-Cyanobenzamido)-3-hydroxypropyl]phenyl 3-cyanobenzoate

Non-planar molecules of the title compound, $C_{25}H_{19}N_4O_3$, are linked by intermolecular N-H···O, O-H···N and C-H···O hydrogen bonds to form a three-dimensional network.

Received 17 May 2006 Accepted 24 May 2006

Comment

The accumulation of β -amyloid peptide (A β) in the brain is thought to be a primary cause for the progression of Alzheimer's disease (Selkoe, 2001). Since $A\beta$ is generated from the cleavage of β -amyloid precursor protein (APP) by proteolytic enzymes, β - and γ -secretases (Sinha & Lieberburg, 1999), these two secretases represent potential therapeutic targets (Schmidt *et al.*, 2005). The identification of β -secretase (Vassar et al., 1999) prompted us to develop effective inhibitors against this enzyme. β -Secretase belongs to an aspartyl protease family, similar to HIV protease. The majority of potent inhibitors of BACE are still peptide-based transition state analogues according to several reviews (Schmidt, 2003; Schmidt et al., 2005, 2006). Hydroxyethylenes, statines, norstatines, bisstatines, hydroxyethylamines and hydroxyethylureas were employed. The hydroxyethylenes delivered the first highly potent inhibitors. The compound (S)-4-[2-(3-cyanobenzoamido)-3-hydroxypropyl]phenyl 3-cyanobenzoate (I), is an important precurser for hydroxyethylene amides. In the reaction of 3-cyanobenzoic acid with L-tyrosinol, we obtained compound (I) as the major and unexpected product. X-ray studies of the title compound, (I), have been carried out to obtain detailed structural information and the results are presented here.

The three intermolecular $N-H\cdots O$, $O-H\cdots N$ and $C-H\cdots O$ hydrogen bonds form a three-dimensional network. Details of the hydrogen-bonding geometry are given in Table 1. The dihedral angles C8-O2-C9-C14 and N2-C18-C19-C24 are 95.5 (3) and -34.2 (4)°, respectively indicating non-planarity in the molecule of (I).

© 2006 International Union of Crystallography All rights reserved

organic papers

Experimental

Ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride (979 mg, 5.11 mmol) and *N*-hydroxybenzotriazole hydrate (828 mg, 6.13 mmol) were added to a solution of 3-cyanobenzoic acid (751 mg, 5.11 mmol) dissolved in CH₂Cl₂ (10 ml). The resulting mixture was stirred at ambient temperature for 5 min, then treated with L-tyrosinol (1.02 ml, 6.13 mmol) and triethylamine (1.42 ml, 10.22 mmol) for 6 h. CH₂Cl₂ (20 ml) was added, and the solution was washed with HCl (0.1 N, 5 × 30 ml), NaHCO₃ saturated solution (3 × 30 ml) and brine (1 × 30 ml), dried over Na₂SO₄ and concentrated to obtain the title compound, (I), as colourless crystals (1.5 g, 69%). Single crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a methanol/dichloromethane (2:8) solution.

Z = 4

 $D_{\rm v} = 1.312 \ {\rm Mg \ m^{-3}}$

Nneedle, colourless

 $0.50 \times 0.08 \times 0.02$ mm

Diffraction, 2004) $T_{\min} = 0.974, T_{\max} = 0.998$

7760 measured reflections

2438 independent reflections

1261 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

T = 299 (2) K

 $\begin{aligned} R_{\rm int} &= 0.052\\ \theta_{\rm max} &= 26.4^\circ \end{aligned}$

Crystal data

 $\begin{array}{l} C_{25}H_{19}N_{3}O_{4}\\ M_{r}=425.43\\ Monoclinic, C2\\ a=32.665 \ (9) \ {\rm \AA}\\ b=4.778 \ (1) \ {\rm \AA}\\ c=15.015 \ (4) \ {\rm \AA}\\ \beta=113.19 \ (2)^{\circ}\\ V=2154.1 \ (9) \ {\rm \AA}^{3} \end{array}$

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector ω and φ scans Absorption correction: analytical (*CrysAlis RED*; Oxford

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.038$ $w = 1/[\sigma^2(F_o^2) + (0.0294P)^2]$ $wR(F^2) = 0.079$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.88 $(\Delta/\sigma)_{max} < 0.001$ 2438 reflections $\Delta\rho_{max} = 0.15$ e Å⁻³289 parameters $\Delta\rho_{min} = -0.14$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2N\cdots O4^{i}$	0.86	2.14	2.889 (4)	145
O3−H3O···N1 ⁱⁱ	0.82	2.19	3.007 (5)	173
$C11-H11\cdots O1^{iii}$	0.93	2.53	3.414 (4)	159

Symmetry codes: (i) x, y - 1, z; (ii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1$.

Molecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

H atoms were positioned with idealized geometry and were refined using a riding model, with C–H in the range 0.93–0.98 Å, O–H = 0.82 Å and N–H = 0.86 Å. $U_{\rm iso}$ (H) values were set equal to $1.2U_{\rm eq}$ of the parent atom. In the absence of significant anamalous dispersion effects, Friedel pairs were merged and the $\Delta f''$ term set to zero. The absolute configuration was assigned according to the known absolute configuration of the educt L-tyrosinol.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2004); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstr. 23, 64287 Darmstadt, for diffractometer time.

References

- Oxford Diffraction (2003). CrysAlis CCD. Oxford Diffraction Ltd., Köln, Germany.
- Oxford Diffraction (2004). CrysAlis RED. Oxford Diffraction Ltd., Köln, Germany.
- Schmidt, B. (2003). Chembiochem, 4, 367-378.
- Schmidt, B., Baumann, S., Braun, H. A. & Larbig, G. (2006). Curr. Top. Med. Chem. 6, 377–392.
- Schmidt, B., Braun, H. A. & Narlawar, R. (2005). Curr. Med. Chem. 12, 1677– 1695.
- Selkoe, D. J. (2001). Nat. Phys. Rev. 81, 741-766.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sinha, S. & Lieberburg, I. (1999). Proc. Natl Acad. Sci. USA, **96**, 11049–11053. Spek, A. L. (2003). J. Appl. Cryst. **36**, 7–13.

Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J. et al. (1999). Science, 286, 753–766.